Safety Instructions

This battery contains organic solvents, and other combustible materials. For this reason, improper handling of the battery could lead to distortion, leakage*, overheating, explosion, or fire, causing bodily injury or equipment trouble. Please observe the following instructions to prevent accidents. (* Leakage is defined as the unintentional escape of a liquid from a battery.)

Warnings — Handling

- **Never swallow.**
 Always keep the battery out of the reach of infants and young children to prevent it from being swallowed. If swallowed, consult a physician immediately.

- **Do not replace.**
 Depending on the battery manufacturer, there might be major differences in performance even among the same types or models of batteries. If you are an equipment manufacturer and need to replace the battery, please use a new one of the same type and same model as the existing one. Because this is a rechargeable battery, its characteristics are completely different from a primary battery even though their shapes are alike. If a primary battery is installed in the circuit in place of a rechargeable battery, gas could be generated or the primary battery could be short-circuited by charging. This could lead to distortion, leakage, overheating, explosion, or fire. Please design your equipment so that the end user cannot replace the battery by mistake.

- **Never use two or more batteries connected in series or in parallel.**
 If batteries are connected together, it is very difficult to design a circuit to observe whether or not the batteries are charged at specified voltage or current as described in “Warning -Circuit Design”.

- **Never reverse the positive and negative terminals when mounting.**
 Improper mounting of the battery could lead to equipment trouble or short-circuiting. This could cause distortion, leakage, overheating, explosion, or fire.

- **Never short-circuit the battery.**
 Do not allow the positive and negative terminals to short-circuit. Never carry or store the battery with metal objects such as a necklace or a hairpin. Do not take multiple batteries out of the package and pile or mix them when storing. Please be careful when installing the battery not to short-circuit it with metal portions of the equipment. Otherwise this could lead to distortion, leakage, overheating, explosion, or fire.

- **Never heat.**
 Heating the battery to more than 100 deg. C could increase the internal pressure, causing distortion, leakage, overheating, explosion, or fire.

- **Never expose to open flames.**
 Exposing to flames could cause the battery to catch on fire and explode.

- **Never disassemble the battery.**
 Do not disassemble the battery, because the separator or gasket could be damaged, leading to distortion, leakage, overheating, explosion, or fire.

- **Never weld the terminals or weld a wire to the body of the battery directly.**
 The heat of welding or soldering could cause the lithium to melt, or cause damage to the insulating material in the battery, leading to possible distortion, leakage, overheating, explosion, or fire. When soldering the battery directly to equipment, solder only the tabs or leads. Even then, the temperature of the soldering iron must be below 350 deg. C and the soldering time less than 5 seconds. Do not use a soldering bath, because the circuit board with battery attached could stop moving or the battery could drop into the bath. Moreover do not use excessive solder, because the solder could flow to unwanted portions of the board, leading to a short-circuit or charging of the battery.

- **Never allow liquid leaking from the battery to get in your eyes or mouth.**
 Because this liquid could cause serious damage, if it does come in contact with your eyes, flush them immediately with plenty of water and consult a physician. Likewise, if the liquid gets in your mouth, rinse immediately with plenty of water and consult a physician.

- **Keep leaking batteries away from fire.**
 If leakage is suspected or you detect a strong odor, keep the battery away from fire, because the leaked liquid could catch on fire.

- **Never touch the battery electrodes.**
 Do not allow the battery electrodes to come in contact with your skin or fingers. Otherwise, the moisture from your skin could cause a discharge of the battery, which could produce certain chemical substances causing you to receive a chemical burns.
Warnings — Circuit Design

Never set the charge voltage above 3.15V.

Charging at a higher voltage could cause the generation of gas, internal short-circuiting, or other malfunctions, leading to distortion, leakage, overheating, explosion, or fire. For details, see the recommended circuits below.

Always charge at the nominal currents shown below.

Large surges of current could degrade the battery’s characteristics, leading to distortion, leakage, overheating, explosion, or fire. To avoid excessive current at the initiation of charging, make sure to attach a protective resistor for current control. See the recommended circuits below.

Table 1 Nominal Charge Current by Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Charge Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC920S</td>
<td>5mA or lower</td>
</tr>
</tbody>
</table>

Recommended circuits

Please refer to the representative basic circuits shown below. If you have any questions about circuit design, please feel free to contact Maxell.

![Circuit Diagram]

(How to select a protective resistor for the current control)

The maximum charge current flows in the battery when charged at an end voltage of 1.0V. Therefore the value of the resistor is calculated using this equation:

\[R = \left(\frac{\text{Charge voltage}_A - 1}{\text{Nominal Charge Current}} \right) \]

* Charge voltage (A): Voltage of main power source
* Charge voltage (B): Output voltage of regulator

For example, the S-812C series, which has a maximum input voltage of 18V, or the S-817 series with a maximum input voltage of 10V (Seiko Instruments Inc.) can be used as a voltage regulator.

Never over-discharge the battery.

If the battery is over-discharged to below the specified voltage (0.5 V), it may not be rechargeable.

Warnings — Disposal

The battery may be regulated by national or local regulation. Please follow the instructions of proper regulation. As electric capacity is left in a discarded battery and it comes into contact with other metals, it could lead to distortion, leakage, overheating, explosion, or fire.

Never expose the battery to ultrasonic sound.

Exposing the battery to ultrasonic sound may cause short-circuiting because the inside material is broken into pieces, leading to distortion, leakage, overheating, explosion, or fire.

Never subject the battery to severe shock.

Dropping, throwing or stomping on the battery may cause distortion, leakage, overheating, explosion, or fire.

Never use or leave the battery in a hot place such as under the direct rays of the sun or in a car in hot weather.

If you do, this may cause distortion, leakage, overheating, explosion, or fire.

Never allow the battery to come in contact with water.

If it does, this may cause the battery to rust or lead to distortion, leakage, overheating, explosion, or fire.

Never store the battery in a hot and highly humid environment.

Doing so may cause the performance of the battery to deteriorate. In certain environments, this may lead to distortion, leakage, overheating, explosion, or fire.
Overview

The button-type titanium carbon lithium rechargeable battery is a small rechargeable battery developed as a backup power source for real-time clocks and SRAM like digital cameras and mobile devices. It provides fully 10 times the capacity of a capacitor of the same size.

Features

- **Approx. 1.5V operating voltage**
 The operating voltage is about 1 to 1.5V the same as the SR, LR battery.

- **Wide range charging voltage**
 Charging voltage is 1.6 to 3.15V.

- **Excellent cycle performance**
 500 charge/discharge cycles is archived.

- **Wide temperature characteristics**
 Usable in a wide temperature range of –20 to 60 deg. C.

- **Excellent overcharge characteristics**
 An original formulated organic electrolyte is employed to provide stable discharge characteristics even if charged for 10 years at 3.15V at 20 deg. C. (under accelerated test conditions conducted by Maxell)

- **Superior leakage resistance**
 Leakage resistance can withstand over 1,200 heat shock cycles between 60 deg. C and –10 deg. C.

Principle and Reactions

The button-type titanium carbon lithium rechargeable battery uses lithium titanium oxide as the positive material, carbon for negative material and specially formulated organic electrolyte solution.

- **Charge/Discharge reactions**
 \[\text{Charge: } \text{Li}_x\text{Ti}_y\text{O}_z + \text{LizC}_6 \rightarrow 2 \text{Li}_x + \text{Ti}_y\text{O}_z + \text{Liz-C}_6 \]
 \[\text{Discharge: } \text{Li}_x\text{Ti}_y\text{O}_z + \text{LizC}_6 \rightarrow \text{Li}_x\text{Ti}_y\text{O}_z + \text{LizC}_6 \]

Applications

- Watches
- Camcorders
- Digital Still Cameras

Construction

![Construction Diagram](image)

Products

<table>
<thead>
<tr>
<th>Feature</th>
<th>TC 920S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Voltage (V)</td>
<td>1.5</td>
</tr>
<tr>
<td>Nominal Capacity (mAh)*</td>
<td>3.5</td>
</tr>
<tr>
<td>Nominal Discharge Current (µA)</td>
<td>100</td>
</tr>
<tr>
<td>Charge/Discharge Cycle</td>
<td>500</td>
</tr>
<tr>
<td>Operating Temperature Range (deg. C)</td>
<td>–20 to +60</td>
</tr>
<tr>
<td>Diameter (mm)</td>
<td>9.5</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>2.05</td>
</tr>
<tr>
<td>Weight (g)**</td>
<td>0.43</td>
</tr>
</tbody>
</table>

* Nominal capacity indicates duration until the voltage drops down to 1.0V when discharged at a nominal discharge current at 20 deg. C.
** Dimensions and weight are for the battery itself, but may vary depending on terminal specifications and other factors.
* Data and dimensions are just reference values. For further details, please contact your nearest Maxell dealer or distributor.
TITANIUM CARBON LITHIUM RECHARGEABLE BATTERY

Characteristics (TC920S)

- **Charge/Discharge Curves**
 - Temperature: 20 deg. C
 - Discharge capacity (mAh) vs Voltage (V)
 - Charge voltage: 2.4V
 - Protective resistor: 300Ω
 - Charge time: 24 hrs
 - Discharge load: 15kΩ
 - Final voltage: 0.9V

- **Temperature Characteristics**
 - Discharge load: 15kΩ
 - Temperature: 20 deg. C

- **Over Charge Characteristics**
 - Discharge load: 15kΩ
 - Temperature: 20 deg. C
 - After charged at 2.4V for 80 days at 60 deg. C

- **Overdischarge Characteristics**
 - Discharge load: 15kΩ
 - Temperature: 20 deg. C
 - After discharged at 0V for 80 days at 60 deg. C

- **Charge/Discharge Cycle Performance**
 - Temperature: 20 deg. C
 - Charge/discharge cycle (Numbers)
 - Charge voltage: 2.4V
 - Protective resistor: 300Ω
 - Charge time: 6hr
 - Discharge load: 1kΩ
 - Discharge time: 6hr

Visit our website for more information
Go to: Products > Rechargeable Batteries > TC (Button Type Titanium Carbon Lithium Rechargeable Battery)
Some transportation regulations have been recently revised and will come into effect after Jan. 1, 2015. The summary is shown in the following table. Please use updated Dangerous Goods Regulations listed in Normative Reference to confirm details.

The major revisions for air transport of lithium cells and batteries

1. Lithium metal cells and batteries transported as cargo will be restricted to cargo aircraft only.
2. Gross mass will change to net quantity for both lithium ion cells and batteries (PI 965 Section IB) and lithium metal cells and batteries (PI 968 Section IB).

Technical instructions for lithium metal batteries (PI 968)

<table>
<thead>
<tr>
<th>Section</th>
<th>Section II</th>
<th>Section IB</th>
<th>Section IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium Metal Content</td>
<td>Cell: ≤ 0.3 g Battery: ≤ 0.3 g</td>
<td>Cell: ≤ 1.0 g Battery: ≤ 2.0 g</td>
<td>Cell: > 1.0 g Battery: > 2.0 g</td>
</tr>
<tr>
<td>Package Limits</td>
<td>Quantity</td>
<td>≤ 2 batteries or ≤ 8 cells</td>
<td>> 2 batteries or > 8 cells</td>
</tr>
<tr>
<td>Net Weight</td>
<td>Cargo aircraft only</td>
<td>Cargo aircraft only</td>
<td>Cargo aircraft only</td>
</tr>
<tr>
<td></td>
<td>2.5 kg</td>
<td>2.5 kg</td>
<td>35 kg</td>
</tr>
<tr>
<td>Classification</td>
<td>Exempted</td>
<td>Class 9</td>
<td></td>
</tr>
<tr>
<td>Packaging</td>
<td>Strong outer packaging</td>
<td>UN performance packaging</td>
<td></td>
</tr>
<tr>
<td>Labels</td>
<td>Note 1)</td>
<td>Note 2)</td>
<td>Note 3)</td>
</tr>
<tr>
<td>Documents</td>
<td>Invoice (air waybill)*</td>
<td>Declaration for DG</td>
<td>Declaration for DG</td>
</tr>
<tr>
<td>Training</td>
<td>Adequate instructions</td>
<td>Air waybill**</td>
<td>Air waybill**</td>
</tr>
</tbody>
</table>

Note 1): Handling label Note 2): Cargo aircraft only label (necessary for lithium metal cells and batteries)
Note 3): Class 9 hazardous label

* The words "lithium metal batteries, in compliance with Section II of PI 968" and "Cargo Aircraft Only" or "CAO" must appear on the air waybill, when an air waybill is used. This description should appear in the "Nature and Quantity of Goods" box.

** The words "Dangerous Goods as per attached Shipper's Declaration" and "Cargo Aircraft Only" or "CAO" must appear in the air waybill's "Handling Information" column.

*** Additional documents must indicate:
- The package contains lithium metal cells or batteries;
- The package must be handled with care and that a flammability hazard exists if the package is damaged;
- Special procedures should be followed in the event the package is damaged, to include inspection and repacking if necessary; and
- A telephone number for additional information.

This information can be written in the Declaration for DG's "Additional Handling Information" column or on the air waybill.
Technical instructions for lithium-ion batteries (PI 965)

<table>
<thead>
<tr>
<th>Section</th>
<th>Section II</th>
<th>Section III</th>
<th>Section IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watt hour</td>
<td>Cell: ≤ 2.7 Wh Battery: ≤ 2.7 Wh</td>
<td>Cell: ≤ 20 Wh Battery: ≤ 100 Wh</td>
<td>Cell: > 20 Wh Battery: > 100 Wh</td>
</tr>
<tr>
<td>Package Limits</td>
<td>Quantity ≤ 2 batteries or ≤ 8 cells</td>
<td>> 2 batteries or > 8 cells</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Net Weight 2.5 kg</td>
<td>10 kg</td>
<td>5 kg: Passenger aircraft 35 kg: Cargo aircraft</td>
</tr>
</tbody>
</table>

Classification
- Exempted
- Class 9

Packaging
- Strong outer packaging 1.2 M drop test
- UN performance packaging

Labels
- CAUTION!
- CAUTION!
- CAUTION!

Documents
- Invoice (air waybill)*
- Declaration for DG Air waybill**
- Declaration for DG Air waybill**
- Additional documents***
- Additional documents***
- Additional documents***

Training
- Adequate instructions
- DG training

* The words "Lithium ion batteries in compliance with section II of PI 965" must appear in the air waybill’s "Nature and Quantity of Goods" box, when an air waybill is used. The words “Cargo Aircraft Only” or “CAO” must appear on the air waybill, when transported by cargo.

** The words "Dangerous Goods as per attached Shipper’s Declaration" must appear in the air waybill’s "Handling Information" column. The words "Cargo Aircraft Only" or “CAO” must appear on the air waybill, when transported by cargo.

*** Additional documents must indicate:
- The package contains lithium ion cells or batteries;
- The package must be handled with care and that a flammability hazard exists if the package is damaged;
- Special procedures should be followed in the event the package is damaged, to include inspection and repacking if necessary; and
- A telephone number for additional information.

This information can be written in the Declaration for DG’s "Additional Handling Information" column or on the air waybill.
The major revisions for UN Model Regulations 18th Revised Edition

(1) Damaged or defective cells or batteries shall be transported as “Class 9” hazardous goods according to Special Provision 376 and Packing Instruction P908 or LP904.

(2) Cells and batteries transported for disposal or recycling shall be transported as “Class 9” hazardous goods according to Special Provision 377 and Packing Instruction P909.

The IMDG Code 2014 edition will contain the descriptions of these UN recommendations. The voluntary compliance date is Jan. 1, 2015. Compliance becomes mandatory on Jan. 1, 2016. Although these revisions will be reflected in each country’s regulations, some districts, countries or airlines may establish their own special requirements. Therefore the shipper shall confirm with the forwarder in advance.

Reference

Except for air transportation, the necessary requirements to transport lithium metal batteries or lithium-ion batteries as exempted from regulation (non-restricted goods) are as follows;

1. The minimum requirements to transport lithium metal batteries as non-restricted goods are as follows;
 a) Cells and batteries shall be manufactured under a quality management program.
 b) For a lithium metal or a lithium alloy cell, the lithium content must not be more than 1 g.
 c) Each cell or battery must be of the type proven to meet the requirements of each test in the UN Manual of Tests and Criteria, 5th revised edition, Part III, sub-section 38.3.
 d) A battery handling label must be displayed on each package. A telephone number must be printed on the label for additional information.
 e) Each consignment must be accompanied by a document for transport with an indication that:
 • the package contains lithium metal cells or batteries;
 • the package must be handled with care and that a flammability hazard exists if the package is damaged;
 • special procedures should be followed in the event that the package is damaged, to include inspection and repackaging if necessary; and
 • a telephone number for additional information.
 f) Each package must be capable of withstanding a 1.2 m drop test.
 g) Except when batteries are installed in or packed with equipment, packages shall not exceed 30 kg gross mass.

2. The minimum requirements to transport the lithium-ion batteries as non-restricted goods are as follows;
 a) Cells and batteries shall be manufactured under a quality management program.
 b) For lithium-ion cells, the Watt-hour rating is not more than 20 Wh. For lithium-ion batteries, the Watt-hour rating is not more than 100 Wh. The Watt-hour rating must be marked on the outside of the battery case except for those manufactured before Jan. 1, 2009.
 c) Each cell or battery is of the type proven to meet the requirement of each test in the UN Manual of Tests and Criteria, 5th revised edition, Part III, sub-section 38.3.
 d) A battery handling label must be displayed on each package. A telephone number must be printed on the label for additional information.
 e) Each consignment must be accompanied by a document for transport with an indication that:
 • the package contains lithium-ion cells or batteries;
 • the package must be handled with care and that a flammability hazard exists if the package is damaged;
 • special procedures should be followed in the event the package is damaged, to include inspection and repackaging if necessary; and
 • a telephone number for additional information.
 f) Each package must be capable of withstanding a 1.2 m drop test.
 g) Except when batteries are installed in or packed with equipment, packages shall not exceed 30 kg gross mass.

Maxell will provide certificates for b) and c) as the need arises. Documentation for d) and e) needs to be prepared by the customer. If our package is used for transport, Maxell will provide the certificate for f) as the need arises. However, if the customer’s package is used, the customer must confirm the package can withstand a 1.2 m drop test. Furthermore, even if our package is used for transport, the telephone number printed on the label must be changed to that of the sender (customer).

Major Normative Reference

UN (United Nations) Recommendations (Air, Marine, Overland transportation)
• UN (United Nations) Recommendations on the Transport of Dangerous Goods: Model Regulations 18th revised edition

Air Transportation
• International Air Transport Association (IATA): Dangerous Goods Regulations, 56th edition 2015

Marine Transportation
• International Maritime Organization (IMO): International Maritime Dangerous Goods (IMDG) Code, 2012 edition (This is applicable until Dec. 31, 2015)
• International Maritime Organization (IMO): International Maritime Dangerous Goods (IMDG) Code, 2014 edition (This is applicable on and after Jan. 1, 2015 and will be mandatory on and after Jan. 1, 2016)
Maxell is accredited with international quality management standard ISO 9001 and international environmental management standard ISO 14001 certifications.